Acabamos de subir a este blog la teoría y los problemas del tema 4.
Material del tema 4
Acabamos de subir a este blog la teoría y los problemas del tema 4.
Acabamos de subir a este blog la teoría y los problemas del tema 4.
Acabamos de subir a este blog las notas de teoría del tema 3 y la presentación.
Acabamos de subir a este blog las notas de teoría del tema 3 y la presentación.
Se han corregido los apuntes del tema 2. Concretamente se ha eliminado el siguiente ejercicio que se había propuesto con cierta ligereza: Este resultado se puede extender a grupos finitos en general. Si ((G,star )) es un grupo finito que tiene algún elemento de orden impar, entonces tiene tantos elementos de orden par como impar. … Sigue leyendo Corrección en los apuntes del tema 2 →
Se han corregido los apuntes del tema 2. Concretamente se ha eliminado el siguiente ejercicio que se había propuesto con cierta ligereza:
Este resultado se puede extender a grupos finitos en general. Si ((G,star )) es un grupo finito que tiene algún elemento de orden impar, entonces tiene tantos elementos de orden par como impar.
Lo que propone el ejercicio es falso. Invitamos al lector a buscar un ejemplo de grupo que tenga todos sus elementos de orden impar.
El ejercicio eliminado estaba en la página 67 de los apuntes y aparecía etiquetado como “Ejercicio 2.4.6”.
Lo que sí es cierto, tras demostrar el Teorema de Cayley, es que en cada grupo finito, al ser isomorfo a un subgrupo de (S_n), debe existir una clasificación análoga a la del signo en las permutaciones. Pero esta clasificación no es la paridad del orden de los elementos.
Se acaba de subir a este blog (y a la plataforma de enseñanza virtual) la presentación que uso en mis clases para la explicación del tema 2. Está en la página MATERIAL DE LA ASIGNATURA CURSO 15/16. Además se han modificado las notas de teoría del tema 2. Concretamente se han corregido las permutaciones que … Sigue leyendo Material del tema 2 →
Se acaba de subir a este blog (y a la plataforma de enseñanza virtual) la presentación que uso en mis clases para la explicación del tema 2. Está en la página MATERIAL DE LA ASIGNATURA CURSO 15/16.
Además se han modificado las notas de teoría del tema 2. Concretamente se han corregido las permutaciones que intervienen en la explicación del juego inicial (página 58 y siguientes), que estaban mal, y la del ejemplo 2.3.15. Además se ha añadido una observación tras la fórmula de Cauchy en la página 63, la nota 2.3.19.
Acabo de subir a la red las notas de teoría correspondientes al Tema 2: Introducción a la teoría de grupos.
Acabo de subir a la red las notas de teoría correspondientes al Tema 2: Introducción a la teoría de grupos.