Ir al Blog

Concurso SURFER de RSME-Imaginary

Diseñado en colaboración con el Instituto de Investigación Matemática de Oberwolfach, el concurso consiste en enviar imágenes de superficies creadas con SURFER.

–> Ver las imágenes y participar

Cómo funciona

Las superficies se crean por ecuaciones sencillas en las variables x, y, z. SURFER muestra los puntos que satisfacen la ecuación. Por ejemplo, con x2 + y2 + z2 -1 = 0 obtenemos una esfera.

Para obtener bellas imágenes con SURFER, se necesita creatividad, intuición y una pizca de habilidad matemática para inventar ecuaciones o para cambiar ecuaciones ya existentes. El programa, así como un manual de usuario, se pueden conseguir en la pagina de instalación de SURFER. Para enviar una imagen al concurso, primero se tiene que guardar en formato .png pinchando en el icono “Guardar” en la parte inferior derecha de la pantalla de SURFER y después subirla a la galería del concurso.

Quiénes pueden tomar parte

Todo el mundo puede participar. Se puede subir una imagen que es el resultado de un trabajo personal o de una colaboración entre un grupo de personas, como por ejemplo alumnos de una clase o un grupo familiar. Todas las imágenes son bienvenidas.

Periodo del concurso, jurado y premios

El concurso estará abierto en el período del 1 de marzo de 2011 hasta el 17 de Mayo de 2012.

Los miembros del jurado y los premios serán anunciados en breve.

El veredicto del jurado es final y no podrá mantener ninguna correspondencia sobre el resultado.

Consejos y enlaces

Imágenes que han sido creadas en otros concursos se pueden ver en este enlace. Algunos consejos de un experto: Creando superficies algebraicas (Prof. G.-M. Greuel).

Sexto desafío: Una cuestión de sombreros

Javier Lázaro, estudiante de 4º de Matemáticas en la Universidad de Zaragoza, presenta el sexto desafío de EL PAÍS con el que se celebra el centenario de la Real Sociedad Matemática Española. Las respuestas pueden enviarse a problemamatematicas@gmail.com antes de la medianoche del lunes (00.00 horas del martes).

Se informa a 30 presos de que se les va a colocar formando una fila y se les va a poner un sombrero en la cabeza a cada uno, blanco o negro, sin especificar cuántos gorros se pondrán de cada color (pueden ser 29 blancos y uno negro, 15 y 15, 17 y 13…). Cada preso sólo verá los sombreros de los prisioneros que tiene delante pero no el suyo ni los de detrás. Un guardia irá preguntando sucesivamente a cada uno de los presos desde el último (el que ve todos pero no el suyo) al primero (que no ve ninguno) de qué color es su sombrero. Los presos sólo pueden contestar blanco o negro: si aciertan son liberados y si no, son ejecutados. Todos los presos pueden escuchar las respuestas anteriores a las suyas.

Antes de llevar esto a cabo, los presos, que conocen la prueba a la que van a ser sometidos pero no naturalmente de qué color serán sus sombreros, tienen un tiempo para hablar entre ellos y pensar una estrategia de grupo. ¿Cuál es la mejor estrategia para salvar SEGURO al mayor número de prisioneros? ¿Cuántos se salvan seguro con esa estrategia?

Atención: Los prisioneros no pueden hacer señas, ni tocar a los otros, ni dar pistas con el tono o volumen de voz… deben contestar blanco o negro de la forma más aséptica posible porque si los carceleros detectaran algún truco de los mencionados, matarían a todos.

Solución al quinto desafío o cómo ganar siempre a los palillos

Solución al quinto desafío matemático de El País.

Recordemos que el juego consistía en buscar sendas estrategias ganadoras para dos juegos que arrancaban con 19 palillos sobre la mesa formando la palabra PAIS. En el primer juego, los contricantes deben retira sucesivamente uno, dos o tres palillos y gana quien vacía la mesa. En el segundo se pueden retirar tantos como se quieran pero siempre de la misma letra cada vez y gana también el que no deja ninguno a su rival.

Vamos con las soluciones. Estos dos juegos forman parte de una familia de juegos del tipo Nim en los que hay una serie de montones de objetos iguales (palillos, fichas) de lo que los que en cada jugada se pueden retirar algunos. De todos ellos existe un método para encontrar la estrategia ganadora que consiste escribir el número de objetos de cada montón en base 2 y sumar de forma independiente cada uno de los órdenes de potencias de dos que tenemos. Pero en nuestros dos juegos la estrategia ganadora puede encontrarse usando algunas de las estrategias globales de pensamiento, como veremos a continuación.

Tal y como cuenta Fernando Corbalán, catedrático de secundaria, y subdirector de DivulgaMAT en el vídeo de la derecha, la estrategia ganadora corresponde en ambos casos al jugador que abre el juego.

Juego 1. Se puede encontrar la solución empezando por el final. Si un jugador consigue dejar solo cuatro palillos al otro, habrá ganado: su rival tendrá que quitar uno, dos o tres, y le dejará siempre la opción de dejar la mesa en blanco. Para asegurar esa situación en la que se dejan cuatro palillos al adversario habrá que dejarle ocho en la jugada anterior, y 12 en la anterior y 16… esto eso, siempre un número de palillos que sea múltiplo de cuatro. Como en el inicio hay 19 palillos, un número que no es múltiplo de cuatro, la estrategia ganadora consiste en quitar tres -y por tanto dejar 16- y a partir de ahí quitar el complementario a cuatro de los que va quitando su contricante (si retira uno, tres; si retira dos, dos; y si retira tres, uno), con lo que el número de palillos sobre la mesa pasará a 12, 8, 4… y ganará.

Juego 2. La estrategia ganadora también la tiene el jugador que empieza pero la solución es otra: pasar a nuestro contrincante una situación simétrica de palillos y ante cada jugada suya, hacer también la simétrica. Así nos aseguramos de que si él tiene palillos para sacar, nosotros también tendremos y seremos nosotros quienes dejemos la mesa vacía. En el caso propuesto el primer jugador puede llegar a esa situación quitando un palillo de la A (o de la P o de la S), con lo que quedarán cuatro figuras formadas por 5 4 4 5 palillos sobre la mesa. A partir de ese momento, el jugador solo tiene que hacer lo que haga su rival.

¿Qué suscita las matemáticas?

Construcción del polígono de 17 lados

A veces le dicen a uno: “Si no son las aplicaciones las que han suscitado las matemáticas, entonces ¿qué ha sido?”. Algunos invocan razones sociológicas. Sea, pero nunca he visto nada demasiado convincente en ese sentido. Es evidente – y del todo trivial – que no pueden hacerse matemáticas cuando el nivel social no permite un cierto ocio y una cierta posición social a quienes precisan de mucho tiempo para reflexionar y resolver sus problemas. Por consiguiente, hay que proporcionar a los matemáticos en potencia un cierto nivel de vida que les permita consagrar enormes esfuerzos y concentración a sus investigaciones, sin estar siempre preocupados por la cuestión de saber si comerán al cabo de tres días o de dos horas. Pero afirmando esto no se ha explicado nada en absoluto. Es una de esas trivialidades que uno apenas se atreve a repetir. Para los interesados en el asunto, vaya este problemita: en 1796, al joven Gauss, que tenía por entonces dieciocho o diecinueve años, se le metió en la cabeza encontrar una construcción del polígono regular de diecisiete lados con regla y compás. A quien me explique por qué el medio social de las pequeñas cortes alemanas del siglo XVIII, en el que Gauss vivía, hubo de llevarle inevitablemente a preocuparse por la construcción del polígono regular de diecisiete lados, a quien me lo explique, bueno, le daré una medalla de chocolote. Bien, procuremos ser serios y volvamos a la cuestión de saber qué pone en marcha las matemáticas. Creo que no se quiere tomar en cuenta algo completamente trivial y visible por todas partes a nuestro alrededor: he tenido hijos y nietos, y veo que los críos se pasan el rato planteándole a uno acertijos, ejercitando su sagacidad y su curiosidad sumergidos en enigmas, rompecabezas y crucigramas, con una alegría que nada consigue enturbiar. Se trata de un hecho universal, observable en todos los países y épocas: existe una especie de curiosidad natural e innata en el ser humano que lo impulsa a la resolución de adivinanzas. Sin ir más lejos, las nueve décimas partes de las matemáticas, aparte de las que tienen su origen en necesidades de orden práctico, consisten en la resolución de adivinanzas.

Jean Dieudonné: Matemáticas vacías y matemáticas significativas. En Pensar la Matemática (Tusquets editores)

Aunque he copiado la cita de Angel “Java” Lopez en Blog.

Quinto desafío: Un PAÍS de palillos

El quinto desafío de EL PAÍS, con el que se celebra el centenario de la Real Sociedad Matemática Española, lo presenta Fernando Corbalán, catedrático de matemáticas y subdirector de DivulgaMAT. Los  lectores de EL PAÍS tienen hasta las 00.00 horas del martes 19 de abril para presentar sus soluciones. Las soluciones deben enviarse al correo problemamatematicas@gmail.com.

El problema es el siguiente:

Presentamos dos juegos y se trata de encontrar qué estrategia ganadora tienen, esto es, el procedimiento para ganar siempre, por muy hábil que sea nuestro rival. La estrategia puede ser del jugador que mueve primero o del segundo, eso también hay que averiguarlo. Obviamente, si el primer jugador tiene estrategia ganadora, no la tendrá el segundo. Para ambos juegos formamos la palabra PAIS con palillos de la forma que se ve  en la imagen y en el vídeo.

Primer juego: Por turnos, cada jugador retira uno, dos o tres palillos del dibujo. Gana el que retira el último palillo, esto es, el que deja la mesa vacía.

Segundo juego: Por turnos, los jugadores retiran el número que quieran de palillos pero siempre de la misma letra cada vez (de la P, de la A, de la I o de la S). Gana también el que retira el último palillo.

Se trata, como decíamos de hallar la estrategia ganadora en ambos juegos (el modo de ganar seguro) precisando si la tiene el jugador que abre el juego o el segundo.