embedded by Embedded Video
Dos estudiantes de Estalmat-Catalunya Andrea Isern Granados, alumna de 3º de ESO en el Instituto Salvador Espriu de Barcelona, y Silvia Martos Baeza, alumna de 3º de ESO en el Instituto Cubelles, de Cubelles (Garraf, Barcelona) presentan el decimotercero de los desafíos matemáticos con los que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española.
Enunciado: Se quiere diseñar un adorno bordado para una camiseta siguiendo el esquema y las condiciones siguientes:
a) Las puntadas se realizarán en zigzag entre dos rectas que forman un ángulo alfa (ver dibujo en el vídeo).
b) La primera puntada empezará en el punto O, común a las dos rectas, y acabará en una de las rectas (que llamaremos horizontal).
c) Todas las demás puntadas deberán tener la misma longitud y se trazarán sin superponerse ni volver hacia atrás.
d) La última puntada debe ser perpendicular a la línea horizontal.
e) Queremos dar exactamente 20 puntadas.
Se pregunta: 1) ¿Cuál debe ser el ángulo alfa para que se cumplan esas condiciones? 2) Si la distancia entre O y el punto de la horizontal por donde pasa la última puntada fuera de 25 cm ¿Cuál sería la longitud de cada puntada? 3) ¿Qué ocurriría si quisiéramos hacer 21 puntadas en vez de 20 con las mismas condiciones, esto es, que la número 21 fuera perpendicular a la horizontal?