Elisa Lorenzo, estudiante de doctorado de la Politécnica de Cataluña, resuelve el cuarto desafío matemático de EL PAÍS con el que se celebra el centenario de la Real Sociedad Matemática Española.
Partamos de una recta cualquiera que divida al reloj por la mitad dejando 6 números a cada lado. Y seleccionemos una de las dos mitades. Fijémonos en el número de números pintados de rojo en dicha mitad, si este número fuese 3, esta recta cumpliría ya las condiciones del problema. Supongamos pues que no es 3, y que por ejemplo es 4. Entonces en la otra mitad habrá 6 – 4 = 2 números pintados de rojo.
Vayamos girando la recta en el sentido de las agujas del reloj poco a poco, de modo que vamos dejando un número fuera de la mitad inicial y vamos cogiendo un número nuevo. En esta nueva mitad el número de números rojos será, el mismo si hemos quitado y añadido números del mismo color, o habrá variado en más o menos uno si hemos añadido y quitado números de distinto color.
Cuando hayamos girado la recta 180º estaremos considerando la mitad opuesta a la primera que habíamos considerado, que tenía 2 números pintados de rojo. Luego nos hemos movido de una mitad que tenía 4 números pintados de rojo a una que tiene 2 números pintados de rojo moviéndonos de uno en uno, así necesariamente hemos pasado por una mitad que tenía 3 números pintados de rojo. La recta que determinaba esta mitad cumple las condiciones pedidas por el problema.
Si la mitad inicial hubiese tenido 0, 1, 2, 5 ó 6 números pintados de rojo el razonamiento es completamente análogo.