Desayuno con… Ignacio Luengo

Alicia Rivera
El País

“Estamos rodeados de datos secretos encriptados”

Si la encriptación de información y el descifrado de claves parece algo misterioso, propio de espías y de altos secretos militares o diplomáticos, lo que hace Ignacio Luengo casi supera a la imaginación: encriptación poscuántica. Se trata, explica este matemático, de investigar sistemas para ocultar datos y claves que resistan el cálculo de los ordenadores, pero no de los actuales, sino de los que tal vez algún día se logren construir, basados en la mecánica cuántica. “Ahora, la principal amenaza para la seguridad en Internet es el trabajo de los ingenieros y físicos con la computación cuántica”, dice, porque esas futuras máquinas podrían destripar cualquier código actual. “La criptografía nos rodea por todas partes, no es cierto que sea cosa de diplomáticos y militares”, recalca. Saca de la cartera una tarjeta de crédito con chip. “Lo que está escrito aquí es el número secreto codificado… Pero también los códigos cuando compramos por Internet, o los derechos legales de una canción o una fotografía con marca de agua… todo el tráfico de datos va cifrado…”.

Luengo ha dado una conferencia en la Fundación Ramón Areces, en Madrid, precisamente sobre las hazañas en encriptación del matemático británico Alan Turing, padre de los ordenadores modernos, en unas jornadas celebradas por su centenario. Tras la charla rechaza el café y, de momento, solo bebe agua. “Turing era un genio y su trabajo en criptografía fue fundamental, hasta el punto de que se ha calculado que la II Guerra Mundial se acortó en al menos dos años gracias a que los aliados lograron leer casi sistemáticamente todo el tráfico cifrado de los alemanes, con su máquina Enigma”, señala Luengo. “Turing fue el que descifró el código e hizo comprensibles los mensajes que se cifraban con Enigma”.

Lamentablemente, añade, tras la guerra, los británicos destruyeron todo el material y se clasificaron los documentos de Turing (algunos se han desclasificado este mismo año). “Y todo eso lo logró con matemáticas, con talante matemático…”, dice este catedrático de Álgebra de la Universidad Complutense. A sus 59 años, dice que su vocación matemática fue algo tardía y que eligió esa carrera porque le resultaba la más sencilla.

“Sí, los códigos obsesionan, como muchas cosas en matemáticas, porque al fin y al cabo nuestro laboratorio es nuestro cerebro, así que uno lo lleva a todas partes”, añade, ya con una taza de café. “Pero tampoco se puede vivir obsesionado 24 horas al día 365 días al año”.

¿Existe el código imbatible? “Sí, uno en que la longitud de la clave es igual a la longitud del mensaje y si la clave se elige aleatoriamente, es indescifrable”, responde este especialista. “Pero es poco práctico”, añade, “porque si tienes que decirle al otro la clave te cuesta lo mismo decirle el mensaje entero; solo se usa cuando los dos interlocutores pueden ponerse de acuerdo de antemano con la clave, como el teléfono rojo entre los presidentes estadounidense y soviético en la guerra fría”.

La verdad es que los códigos que se usan normalmente son muy buenos…, explica Luengo. Lo que falla es el protocolo, lo que se hace al usarlos: “Hay un virus informático, por ejemplo, que se mete en tu ordenador y almacena lo que tecleas; es muy peligroso porque alguien puede cazar tus números de tarjeta y claves, por muy secretas que sean”. Él aconseja, cuando se usa en Internet, escribir la clave en otro documento, arrastrar los números con el ratón e importarla a la página web.

Ignacio Luengo es Catedrático de Álgebra de la Universidad
Complutense y presidente de la Comisión Científica de la RSME.

Aprenda un poco de inglés con… Gian-Carlo Rota (8/11)

(Sigue de las entradas Aprenda un poco de inglés con… Gian-Carlo Rota (1/11), (2/11), (3/11), (4/11) (5/11), (6/11) y (7/11))

7 Use the Feynman method

Richard Feynman was fond of giving the following advice on how to be a genius. You have to keep a dozen of your favorite problems constantly present in your mind, although by and large they will lay in a dormant state. Every time you hear or read a new trick or a new result, test it against each of your twelve problems to see whether it helps. Every once in a while there will be a hit, and people will say: “How did he do it? He must be a genius!”

Aprenda un poco de inglés con… Gian-Carlo Rota (7/11)

(Sigue de las entradas Aprenda un poco de inglés con… Gian-Carlo Rota (1/11), (2/11), (3/11), (4/11) (5/11) y (6/11))

6 Do not worry about your mistakes

Once more let me begin with Hilbert. When the Germans were planning to publish Hilbert’s collected papers and to present him with a set on the occasion of one of his later birthdays, they realized that they could not publish the papers in their original versions because they were full of errors, some of them quite serious. Thereupon they hired a young unemployed mathematician, Olga Taussky-Todd, to go over Hilbert’s papers and correct all mistakes. Olga labored for three years; it turned out that all mistake scould be corrected without any major changes in the statement of the theorems. There was one exception, a paper Hilbert wrote in his old age, which could not be fixed; it was a purported proof of the continuum hypothesis, you will find it in a volume of the Mathematische Annalen of the early thirties. At last, on Hilbert’s birthday, a freshly printed set of Hilbert’s collected papers was presented to the Geheimrat. Hilbert leafed through them carefully and did not notice anything.

Now let us shift to the other end of the spectrum, and allow me to relate another personal anecdote. In the summer of 1979, while attending a philosophy meeting in Pittsburgh, I was struck with a case of detached retinas. Thanks to Joni’s prompt intervention, I managed to be operated on in the nick of time and my eyesight was saved.

On the morning after the operation, while I was lying on a hospital bed with my eyes bandaged, Joni dropped in to visit. Since I was to remain in that Pittsburgh hospital for at least a week, we decided to write a paper. Joni fished a manuscript out of my suitcase, and I mentioned to her that the text had a few mistakes which she could help me fix.

There followed twenty minutes of silence while she went through the draft. “Why, it is all wrong!” she finally remarked in her youthful voice. She was right. Every statement in the manuscript had something wrong. Nevertheless, after laboring for a while, she managed to correct every mistake, and the paper was eventually published.

There are two kinds of mistakes. There are fatal mistakes that destroy a theory; but there are also contingent ones, which are useful in testing the stability of a theory.

Aprenda un poco de inglés con… Gian-Carlo Rota (6/11)

(Sigue de las entradas Aprenda un poco de inglés con… Gian-Carlo Rota (1/11), (2/11), (3/11), (4/11) y (5/11))

5 Every mathematician has only a few tricks

A long time ago an older and well known number theorist made some disparaging remarks about Paul Erdos’ work. You admire contributions to mathematics as much as I do, and I felt annoyed when the older mathematician flatly and definitively stated that all of Erdos’ work could be reduced to a few tricks which Erdos repeatedly relied on in his proofs. What the number theorist did not realize is that other mathematicians, even the very best, also rely on a few tricks which they use over and over. Take Hilbert. The second volume of Hilbert’s collected papers contains Hilbert’s papers in invariant theory. I have made a point of reading some of these papers with care. It is sad to note that some of Hilbert’s beautiful results have been completely forgotten. But on reading the proofs of Hilbert’s striking and deep theorems in invariant theory, it was surprising to verify that Hilbert’s proofs relied on the same few tricks. Even Hilbert had only a few tricks!

Aprenda un poco de inglés con… Gian-Carlo Rota (5/11)

(Sigue de las entradas Aprenda un poco de inglés con… Gian-Carlo Rota (1/11), (2/11), (3/11) y (4/11))

4 You are more likely to be remembered by your expository work

Let us look at two examples, beginning with Hilbert. When we think of Hilbert, we think of a few of his great theorems, like his basis theorem. But Hilbert’s name is more often remembered for his work in number theory, his Zahlbericht, his book Foundations of Geometry and for his text on integral equations. The term “Hilbertspace” was introduced by Stone and von Neumann in recognition of Hilbert’s textbook on integral equations, in which the word “spectrum” was first defined at least twenty years before the discovery of quantum mechanics. Hilbert’s textbook on integral equations is in large part expository, leaning on the work of Hellinger and several other mathematicians whose names are now forgotten.

Similarly, Hilbert’s Foundations of Geometry, the book that made Hilbert’s name a household word among mathematicians, contains little original work, and reaps the harvest of the work of several geometers, such as Kohn, Schur (not the Schur you have heard of), Wiener (another Wiener), Pasch, Pieri and several other Italians.

Again, Hilbert’s Zahlbericht, a fundamental contribution that revolutionized the field of number theory, was originally a survey that Hilbert was commissioned to write for publication in the Bulletin ofthe German Mathematical Society.

William Feller is another example. Feller is remembered as the author of the most successful treatise on probability ever written. Few probabilists of our day are able to cite more than a couple of Feller’s research papers; most mathematicians are not even aware that Feller had a previous life in convex geometry.

Allow me to digress with a personal reminiscence. I sometimes publish in a branch of philosophy called phenomenology. After publishing my first paper in this subject, I felt deeply hurt when, at a meeting of the Society for Phenomenology and Existential Philosophy, I was rudely told in no uncertain terms that everything I wrote in my paper was well known. This scenario occurred more than once, and I was eventually forced to reconsider my publishing standards in phenomenology.

It so happens that the fundamental treatises of phenomenology are written in thick, heavy philosophical German. Tradition demands that no examples ever be given of what one is talking about. One day I decided, not without serious misgivings, to publish a paper that was essentially an updating of some paragraphs from a book by Edmund Husserl, with a few examples added. While I was waiting for the worst at the next meeting of the Society for Phenomenology and Existential Philosophy, a prominent phenomenologist rushed towards me with a smile on his face. He was full of praise for my paper, and he strongly encouraged me to further develop the novel and original ideas presented in it.