Una única suma posible de cuadrados

Ya hay solución para el decimonoveno desafío matemático con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española (ver el vídeo conmemorativo). Juan González-Meneses, Profesor Titular de la Universidad de Sevilla propuso el problema y lo resuelve ahora (vídeo arriba): hay una manera de descomponer 2^2012 como suma de cuatro cuadrados, y ninguna manera de descomponer 2^2011.

Esta semana se han recibido 320 respuestas, de las que un 50% daban la respuesta correcta. De las respuestas correctas, aproximadamente la mitad usaban un razonamiento similar a la solución propuesta en el vídeo, y el resto hacía uso del Teorema de Jacobi, que da el número de formas de escribir un número natural como suma de cuatro cuadrados… de números enteros (incluyendo el cero, y contando como soluciones distintas las que se obtienen al cambiar de orden los sumandos).

Algunas respuestas calculaban la descomposición de pequeñas potencias de 2, y daban por supuesto que para potencias de 2 más grandes se seguía el mismo patrón. Aunque esto sea cierto, la simple observación de los primeros casos no garantiza que la misma propiedad sea cierta para potencias de 2 mayores. Por tanto, este tipo de respuestas no se puede considerar como válida.

Recordemos el problema: queremos saber de cuántas formas se puede descomponer 2^2012 (y también 2^2011) como suma de cuatro cuadrados perfectos de números naturales (sin incluir el cero).

La solución propuesta por el Profesor González-Meneses es la siguiente:

Supongamos que tenemos una forma de escribir 2^2012 como suma de cuatro cuadrados: 2^2012=A^2+B^2+C^2+D^2. Para obtener información sobre estos cuatro números A, B, C y D, usaremos un método muy útil para trabajar con números grandes: miraremos los restos que se obtienen al dividir cada sumando por un número pequeño, en este caso, el 8.

Veamos cuál es el resto de dividir A^2 entre 8.

Si A es par (múltiplo de 2), su cuadrado será múltiplo de 4. Por tanto, el resto de dividir A^2 entre 8, en este caso, debe ser 0 o 4.

Si A es impar, se escribirá A=2k+1. Su cuadrado será A^2=4k^2+4k+1=4k(k+1)+1. Observemos que, o bien k, o bien k+1 debe ser par, luego 4k(k+1) es múltiplo de 8. Por tanto, el resto de dividir A^2 entre 8, en este caso, es 1.

Análogamente, el resto de dividir B^2, C^2 o D^2 entre 8 debe ser también 0, 1 o 4.

Como la suma de los cuatro cuadrados es igual a 2^2012, que es múltiplo de 8, los cuatro restos deben sumar obligatoriamente 0, 8 o 16. Y como los restos sólo pueden ser 0, 1 o 4, se observa fácilmente (por ejemplo haciendo todas las combinaciones posibles), que nunca puede haber un 1. Es decir, A, B, C y D deben ser pares, y podremos escribirlos A=2a, B=2b, C=2c y D=2d.

Pero entonces, si tomamos la igualdad 2^2012=A^2+B^2+C^2+D^2 y la dividimos entre 4, obtenemos 2^2010=a^2+b^2+c^2+d^2. Podemos ahora repetir el argumento, concluyendo que a, b, c y d son pares, lo que nos da una descomposición como suma de cuatro cuadrados de 2^2008, luego otra de 2^2006, 2^2004, etc, dividiendo cada vez por 4 la igualdad anterior. Esto nos llevaría a obtener una descomposición de 2^2=4 como suma de cuatro cuadrados. Pero la única descomposición posible es 4=1+1+1+1, que sólo puede provenir de 2^2012=2^2010+2^2010+2^2010+2^2010. Es decir, 2^2012=(2^1005)^2+(2^1005)^2+(2^1005)^2+(2^1005)^2 es la única forma de descomponer 2^2012 como suma de cuatro cuadrados.

En el caso de 2^2011, el mismo argumento nos dice que cualquier descomposición de 2^2011 como suma de cuatro cuadrados, nos daría otra de 2^2009, 2^2007, etc. hasta llegar a 2^1=2. Pero como 2 no se puede descomponer como suma de cuatro cuadrados, se deduce que no hay ninguna manera de descomponer 2^2011 como suma de cuatro cuadrados. Continuar leyendo “Una única suma posible de cuadrados”

Decimonoveno desafío: Cuadrados que suman grandes cifras

Nuestro compañero Juan González-Meneses, profesor titular de la Facultad de Matemáticas de la Universidad de Sevilla, presenta el decimonoveno de los desafíos matemáticos con los que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. Puedes enviar tu solución antes de las 00.00 horas del martes 26 de julio (medianoche del lunes, hora peninsular española) a la dirección problemamatematicas@gmail.com.

Enunciado: Los números cuadrados (o cuadrados perfectos) son los cuadrados de los números naturales, es decir: 1 (1^2), 4 (2^2), 9 (3^2), 16 (4^2), 25 (5^2), etcétera. En el problema de esta semana trataremos de descubrir de cuántas maneras distintas se puede escribir un número dado como suma de cuatro cuadrados. Por ejemplo, el número 39 se puede escribir de dos formas: 39=1+1+1+36 y 39=1+4+9+25. Observemos que se pueden repetir sumandos y que no contaremos como maneras distintas de escritura las que se obtienen al cambiar el orden de los sumandos.

Las preguntas concretas de esta semana son: ¿De cuántas formas distintas se puede escribir 2^2012 como suma de cuatro cuadrados? ¿Y de cuántas formas se puede escribir 2^2011?

Una advertencia: si alguien pretende usar un ordenador para calcular las posibles respuestas, quizás le convenga darse cuenta de que el número de cuadrados perfectos más pequeños que los números que se piden es inmenso (concretamente, mayor que 2^1005). Esto significa que el ordenador más potente del mundo tardaría millones de años en calcular todas las posibilidades, por lo que para resolverlo antes del martes es necesario hacerlo mediante un razonamiento matemático.

NOTA IMPORTANTE: Lo que se pide no es encontrar una manera de escribir los números dados como suma de cuatro cuadrados, sino señalar de cuántas maneras distintas pueden escribirse y describir el razonamiento que se ha seguido para llegar a la solución.

Una larga caminata

Ya hay solución para el decimoctavo desafío con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. David Obrador Sala, profesor de matemáticas de educación secundaria y miembro de la Associació Catalana de GeoGebra, planteó el problema y ahora lo resuelven (vídeo arriba). Esta semana teníamos que averiguar cuánto tiempo emplearía cada día una tribu instalada en algún lugar de un terreno con forma de triángulo equilátero de 10 kilómetros de lado en aprovisionarse de agua y alimentos en los tres bordes del territorio si se desplazara a una velocidad de 5 km/h.

Se han recibido 1.120 respuestas dentro del plazo, de las que aproximadamente un 50% observaban y demostraban que el tiempo que la tribu necesita para su recorrido diario es de 3,46 horas diarias y que esta cifra no depende del punto del triángulo en el que esté situado el poblado. Pensamos que este resultado, conocido entre los matemáticos como Teorema de Viviani, puede resultar curioso para quienes no lo conociesen (y aprovechamos para recordar que nuestro objetivo es llegar a un público amplio mediante desafíos variados).

Pasemos a la solución. Una buena demostración es la que nos ha enviado Manuel Pedrajas Estepa:

Sea un punto interior al triangulo equilátero, que dista en perpendicular (camino más corto) a los tres lados h1; h2; h3. Este punto y los vértices forman tres triángulos, cuyas áreas sumadas dan el área del triángulo grande, cuya altura H se calcula usando el Teorema de Pitágoras.

Por tanto 10*H/2= (10*h1+10*h2+10*h3)/2, así que siempre h1+h2+h3=H=(10*raíz(3))/2

Como es ida y vuelta tenemos que se recorrían 10*1.732, que a 5 km/h significan 2*1.732 horas. Resultado: 3,46 horas.

Otros soluciones utilizan un poco de trigonometría, las hay que incluyen applets de GeoGebra (como los usados en el vídeo, que se pueden encontrar en esta dirección para la experimentación y en esta otra para la demostración) y algunas, sin calcular áreas, se apoyan en nociones básicas de geometría, como la demostración sin palabras de Juan Canteli que aparece en el pdf adjunto.

Hay varios lectores que, puesto que el problema se presentó como una historia, han respondido del mismo modo (algunas, por cierto, muy literarias, originales y divertidas) entre ellos Xavier Giralt. Reproducimos su texto:

“El pequeño grupo de antepasados nuestros andaban dentro del triangulo buscando un buen lugar donde asentarse, cuando una pequeña niña gritó:

– ¡¡¡Aquí, aquí !!! … que en este prado lleno de flores la miel será bien rica – Pero hermanita – reaccionó su hermano mayor – debemos situarnos en el centro del triángulo, que así dedicaremos menos tiempo a andar hacia cada uno de los lados.

Afortunadamente había un anciano entre el grupo que explicó como en un triángulo equilátero la suma de las distancias entre un punto interior y cada uno de los lados es siempre la misma. De esta forma, podían elegir cualquier punto interior del terreno, que siempre recorrerían una distancia equivalente a la altura del triangulo para ir, y otra para volver.

Se asentaron junto al prado lleno de flores, sabiendo que recorrerían diariamente 2*10*cos(PI/6) km. El hermano mayor también sabia que recorrían 5 km cada hora, con lo que dedicarían 3,46 horas diarias a esos trayectos, ¡pero disfrutando también de la miel bien rica de ese prado lleno de flores!”

Como señala Xavier en su historia, no es necesario escoger un punto “especial” para resolver el desafío. Elegir un punto concreto ha sido el error más frecuente entre el 20% de respuestas que no han entrado en el sorteo.

¿Y el 30% restante? Son soluciones que indican que el tiempo que la tribu necesita es independiente del punto en que se sitúe el poblado, pero el argumento que dan no constituye realmente una demostración: muchos dicen que, puesto que no hemos dicho dónde está el poblado, la solución debe ser independiente de la localización. A pesar de todo, también han entrado en el sorteo ya que, a la vista de las respuestas, hemos revisado la presentación del desafío y pensamos que, si queríamos una demostración (¡y sí la queríamos!), teníamos que haber preguntado de otra manera (nosotros también aprendemos de vosotros).

Decimoctavo desafío: De un lado para otro

David Obrador Sala, profesor de matemáticas de educación secundaria y miembro de la Associació Catalana de GeoGebra, presenta el decimoctavo de los desafíos matemáticos con los que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. Envía tu solución antes de las 00.00 horas del martes 19 de julio (medianoche del lunes) a la dirección problemamatematicas@gmail.com.

Esta semana le echamos un poco de literatura al enunciado:

Hace muchos siglos un pequeño grupo de antepasados nuestros buscaban un lugar adecuado donde establecerse y formar un poblado. Fue así como descubrieron un magnífico territorio llano en forma de triángulo equilátero de 10 km de lado. Era una tierra llena de posibilidades:

A lo largo de uno de los lados del triángulo, discurría un río tranquilo y cristalino de donde podían tomar el agua e incluso pescar. Otro de los lados se abría en toda su longitud a una sabana en donde podrían cazar buenas piezas . El tercer lado limitaba completamente con un terreno fértil que podían cultivar

Felices con este descubrimiento se establecieron en un punto de esta vasta llanura triangular y construyeron tres caminos que unían el poblado con cada uno de los lados. Cada camino unía el poblado con uno de los lados en línea recta y de manera que el trayecto era el más corto posible. Y empezaron a vivir según sus ancestrales costumbres. Cada día, con el alba se dirigían al río a buscar agua e incluso algún pescado, si la suerte acompañaba. De regreso al poblado cambiaban los cántaros por los arcos y las flechas, y recorrían el camino hasta el límite de la sabana para cazar alguna presa que llevaban al poblado ante la alegría de todos. En la hoguera cocinaban sus manjares. Tras la comida y antes del trayecto vespertino, un poco de descanso. Por la tarde tomaban el camino hacia las zonas de cultivo para llevar a cabo rudimentarios trabajos agrícolas. Al atardecer volvían al poblado llevando, en ocasiones, el fruto de las sencillas cosechas.

Se trataba de una vida tranquila que sólo tenía el inconveniente de las largas caminatas de ida y vuelta en línea recta por los trillados caminos hacia el río, la sabana y los cultivos. Paso a paso, ni muy lentos ni muy rápidos, a una velocidad constante de 5 km/h, cada día recorrían los tres caminos que les aseguraban su sustento. Eran felices y vivían en paz… aunque a veces se sentían cansados de tanto caminar.

Lo que preguntamos esta semana es: ¿Cuántas horas empleaban cada día en recorrer estos caminos? ¿Cuántas horas emplea cada día un individuo de esta tribu en recorrer ida y vuelta estos trayectos?

NOTA IMPORTANTE: Se pedimos la solución en horas con dos decimales, no en horas y minutos.