Desafío: Un vecindario emprendedor

Francisco Antonio González, desarrollador informático de Indra en San Fernando de Henares (Madrid), presenta el 37º desafío con el El País celebra el centenario de la Real Sociedad Matemática Española.

A continuación añadimos el enunciado del problema por escrito.

El pueblo de Bolci solo tiene solo una calle y su terreno se divide en 20 parcelas alineadas y numeradas como se muestra en la figura 1. En esas parcelas, viven 26 familias que hemos nombrado con letras desde la A a la Z. Diremos que dos familias del pueblo son vecinas cuando vivan en la misma parcela (como ocurre con E y G) o cuando vivan en parcelas adyacentes, (como ocurre con D y G).

Debido al estado de deterioro de las casas, los habitantes de Bolci han decidido derribar sus viviendas actuales y construir una manzana de pisos que ocupará unas pocas parcelas. El resto del terreno lo habilitarán para zonas verdes, comercios y otros servicios para lograr un pueblo más moderno, habitable y ecológico. No se conoce aún donde estarán los pisos, ni cuantas viviendas habrá en cada edificio. Tampoco se sabe cómo los ocuparán las familias. pero los habitantes del pueblo han acordado que en el nuevo proyecto se deben respetar las tres condiciones siguientes:

1.- Respetar las divisiones parcelarias: Cada vivienda nueva debe estar completamente ubicada dentro de alguna de las primitivas parcelas.

2.- Mantener la vecindad: Las familias que ahora son vecinas deben seguir siéndolo cuando se trasladen a su nueva vivienda. Se puede tener también nuevos vecinos, pero los viejos hay que mantenerlos.

3.- Cambiar obligatoriamente de parcela: Ninguna familia puede mantenerse en su parcela inicial, todas deben cambiar de número de parcela.

Solo si se cumplen esas tres condiciones podremos decir que un proyecto es válido como, por ejemplo, el que muestra la figura 2. Fijémonos que en el ejemplo que damos se da una circunstancia curiosa: Las familias vecinas L y M siguen estando en las parcelas 9 y 10. Tan solo han intercambiado entre sí el número de parcela. Decimos entonces que en las parcelas 9 y 10 hay un sitio de cruce. En cada proyecto, llamaremos sitio de cruce a dos parcelas que tienen al menos dos familias vecinas que intercambian entre sí el número de parcela que tenían en la distribución original.

Y el desafío de la semana consiste en determinar la cantidad mínima y máxima de sitios de cruce que puede llegar a tener un proyecto válido. En la respuesta, debéis indicar el valor mínimo y el valor máximo, aportar al menos un proyecto de ejemplo de cada caso, y señalar las razones que garantizan que no hay posibilidad de construir proyectos válidos con una cantidad de sitios de cruce fuera de ese rango.

Solución: Así se obtienen tres medias enteras

Ya hay solución para el trigésimo sexto desafío matemático con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española.

Pedro Carrión Rodríguez de Guzmán, profesor en el IES Alcántara de Alcantarilla (Murcia), propuso el problema, el primero de los “desafíos de los lectores”, y lo resuelve ahora.

Recordemos que el desafío consistía en encontrar el menor primo p mayor que 100 para el que existe otro número entero distinto q, éste no necesariamente primo, de manera que las medias aritmética, geométrica y armónica de p y q sean números naturales.

Antes de empezar a resolverlo vamos a recordar dos hechos sobre divisibilidad que se usarán en la resolución.

El primero es que si p es un número primo y p divide al producto mxn necesariamente p divide a m o a n.

El segundo hecho es que si m y n son dos números primos entre sí entonces si m divide a n x r necesariamente m divide a r.

Comencemos con la solución: Continuar leyendo “Solución: Así se obtienen tres medias enteras”

Desafío: Unas medias enteras

El desafío de esta semana, el 36º con el que celebramos el centenario de la Real Sociedad Matemática Española, es el primero de los “desafíos de los lectores”. Lo propuso, y lo presenta, Pedro Carrión Rodríguez de Guzmán, profesor en el IES Alcántara de Alcantarilla (Murcia).

A continuación añadimos el enunciado por escrito del problema propuesto por Pedro Carrión.

La media aritmética de dos números se define como A(a,b)=(a+b)/2. Por ejemplo, A(3,7)=5

La media geométrica de dos números se define como G(a,b)=Raíz cuadrada de (axb). Por ejemplo, G(4,5)=Raíz (20)

Por último, la media armónica de dos números se define como H(a,b)=2/(1/a+1/b) que se puede simplificar operando algebraicamente como H(a,b)=2ab/(a+b). Por ejemplo, H(3,7)=2x3x7/ (3+7)= 4’2

El desafío de esta semana consiste en encontrar el menor primo p mayor que 100 para el que existe otro número entero distinto q, éste no necesariamente primo, de manera que las medias aritmética, geométrica y armónica de p y q sean números naturales.

Se considerarán correctas todas las soluciones que den valores válidos para p y q, pero, como siempre, nos gustaría que nos dijeseis cómo los habéis encontrado.

Solución: Así se cuadra un rectángulo

Ya hay solución para el trigésimo quinto desafío matemático con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española. Marta Macho Stadler, profesora de Geometría en la Universidad del País Vasco, propuso el problema y lo resuelve ahora.

Recordemos que el desafío consistía en averiguar las medidas de un rectángulo R y de los 13 cuadrados en los que estaba subdividido, de acuerdo con la figura que se mostraba. En realidad, en la figura, los cuadrados interiores se habían deformado en rectángulos, pero sus alineaciones coincidían con las de los cuadrados de R. Sabíamos además que el cuadrado rojo medía 3 cm de lado.

Ordenados de menor a mayor los lados miden -exceptuando el ya conocido- 5, 9, 11, 14, 19, 20, 24, 31, 33, 36, 39 y 42. Y el rectángulo R mide 75 por 112 centímetros. Continuar leyendo “Solución: Así se cuadra un rectángulo”