Solución: dos triángulos idénticos

Ya hay solución para el trigésimo noveno desafío matemático con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española.

Miguel Ángel Morales Medina, licenciado en Matemáticas por la Universidad de Granada y editor del Boletín de la RSME, propuso este penúltimo desafío y ahora lo resuelve. Recordemos en qué consistía.

Partiendo de un triángulo cualquiera de vértices ABC, tomamos dos de sus lados, AB y AC por ejemplo, y dibujamos cuadrados apoyados en ellos. Llamamos I y J a los centros de los dos cuadrados y H al punto medio del lado del triángulo donde no hemos apoyado ningún cuadrado (el BC en este caso). Se pedía demostrar que los segmentos HI y HJ tienen la misma longitud y que además forman un ángulo de 90º.

Llamemos K al punto medio del lado AB y L al punto medio del lado AC, y dibujemos los triángulos HKJ y HLI. Representamos también el segmento KL en línea discontinua (ver la figura 1 en la parte superior o la ampliación aquí).

Como el segmento LH une los puntos medios de los lados AC y BC, entonces es paralelo al otro lado, el AB. Lo mismo ocurre con el segmento KL, que como une los puntos medios de los lados AB y AC será paralelo al otro lado, el BC. Esto nos dice que BHLK es un paralelogramo, por lo que, en particular, los segmentos KB y LH son iguales. Pero KB y JK también son iguales, por lo que obtenemos que JK=LH. El mismo razonamiento nos sirve para llegar a que ALHK es un paralelogramo, por lo que, en particular, los segmentos AL y KH son iguales. Pero AL y LI también lo son, por lo que ahora se obtiene que KH=LI.

Por otro lado, los triángulos KBH y LHC tienen sus lados iguales y paralelos, por lo que el ángulo BKH y el ángulo HLC son iguales.

Recapitulemos. Tenemos que los triángulo JKH y el HLI (pintados de rojo y verde respectivamente en la figura dos, que aparece aquí ampliada) tienen dos lados iguales (KJ=LH y KH=LI) y además también tienen igual el ángulo formado por esos lados (el ángulo JKH es 90º+BKH, y el HLI es 90º+HLC, que hemos visto antes que es igual a BKH). Con esto podemos concluir que ambos triángulos son iguales, y el hecho de que sean iguales nos asegura que los segmentos HI y HJ tienen la misma longitud.

Falta demostrar que estos dos segmentos forman un ángulo de 90º. Pero esto es sencillo: JK forma un ángulo de 90º con AK, que es paralelo a LH. Por tanto JK y LH forman un ángulo de 90º. Del mismo modo, LI forma un ángulo de 90º con AL, que es paralelo a KH. Por tanto LI y KH forman un ángulo de 90º. Como los triángulos son iguales, todo esto nos asegura que los segmentos HI y HJ forman un ángulo de 90º.

Desafío: dos segmentos iguales y en ángulo recto

Con cierto retraso cuelgo en el blog el último desafío de El País.

Miguel Ángel Morales Medina, licenciado en Matemáticas por la Universidad de Granada y editor del Boletín de la RSME propone y presenta el 39º y penúltimo desafío con el que celebramos el centenario de la Real Sociedad Matemática Española.

Enunciado: Partiendo de un triángulo cualquiera de vértices ABC, tomamos dos de sus lados, AB y AC por ejemplo, y dibujamos cuadrados apoyados en ellos. Llamamos I y J a los centros de los dos cuadrados y H al punto medio del lado del triángulo donde no hemos apoyado ningún cuadrado (el BC en este caso).

El desafío de esta semana consiste en demostrar que los segmentos HI y HJ tienen la misma longitud y que además forman un ángulo de 90º. La situación inicial puede verse en esta figura.

P.D.- Pueden  ver la solución al desafío anterior en este enlace.

Desafío: Rock and roll en la plaza del pueblo

Francisco Javier Masip Uson, licenciado en Medicina y jefe de Sección de Control de Mercado en la Dirección General de Consumo de la Diputación General de Aragón, propone y presenta el tercero de los desafíos enviados por los lectores, el 38º con el que El País celebra el centenario de la Real Sociedad Matemática Española.

A continuación añadimos el enunciado del problema por escrito.

El Ayuntamiento de un pueblo quiere asfaltar una plaza circular que tiene en el centro una fuente, también circular, para celebrar allí conciertos de música a lo largo del año.

Al redactar el pliego de condiciones, el Consistorio necesita saber la superficie a asfaltar, que es la del anillo circular comprendido desde donde acaba la fuente y hasta el perímetro de la plaza, para así poder fijar el precio de licitación de la subasta. Al consultar con un aparejador para que haga el estudio, éste señala que cobra un importe por cada medición que haga entre cada dos puntos. Como el Ayuntamiento está recortando gastos, pretende que esa partida sea lo más económica posible.

Y el desafío de esta semana es: ¿Cuál sería el menor número de mediciones, consideradas entre cada dos puntos, que serían necesarias para calcular el área de ese anillo circular?, ¿a qué se correspondería o corresponderían esa o esas distancias? y ¿cómo se hallaría la superficie del anillo en base a ese o esos datos?

Solución: un sólo sitio de cruce

Ya hay solución para el trigésimo séptimo desafío matemático con el que EL PAÍS celebra el centenario de la Real Sociedad Matemática Española., el segundo de los propuestos por los lectores. Francisco Antonio González, desarrollador informático de Indra en San Fernando de Henares (Madrid), propuso el problema, y lo resuelve ahora.

Parece que a los lectores les ha costado algo más hacerse con este desafío: se han recibido en el plazo marcado 120 respuestas, de las que un 75% eran correctas.

Recordemos brevemente que el desafío trataba sobre un nuevo diseño urbanístico para el pueblo de Bolci. Esta localidad tenía una sola calle, con 20 parcelas alineadas y numeradas en las que vivían 26 familias distribuidas como muestra la figura 1. Para mejorar los equipamientos, se iban a derribar las viviendas para construir una manzana de pisos. El proyecto arquitectónico para la nueva distribución debía respetar tres condiciones: 1) Cada vivienda nueva debe estar completamente ubicada dentro de alguna de las primitivas parcelas; 2) Las familias que ahora son vecinas deben seguir siéndolo cuando se trasladen a su nueva vivienda; y 3) Ninguna familia se mantiene en su parcela inicial, todas deben cambiar de número de parcela.

A partir de ahí, llamábamos sitio de cruce de un proyecto a dos parcelas que contuvieran al menos un par de familias vecinas que, en la mudanza, intercambiasen entre sí su número de parcela. Y el desafío consistía en obtener la cantidad mínima y máxima de sitios de cruce que puede llegar a tener un proyecto válido, dando las razones que garantizan que no hay posibilidad de construir proyectos válidos con una cantidad de sitios de cruce fuera de ese rango.

La solución es que en todo proyecto válido siempre hay un sitio de cruce y solo puede haber uno. Por tanto, los valores máximo y mínimo coinciden y valen 1. Continuar leyendo “Solución: un sólo sitio de cruce”

Desafío: Un vecindario emprendedor

Francisco Antonio González, desarrollador informático de Indra en San Fernando de Henares (Madrid), presenta el 37º desafío con el El País celebra el centenario de la Real Sociedad Matemática Española.

A continuación añadimos el enunciado del problema por escrito.

El pueblo de Bolci solo tiene solo una calle y su terreno se divide en 20 parcelas alineadas y numeradas como se muestra en la figura 1. En esas parcelas, viven 26 familias que hemos nombrado con letras desde la A a la Z. Diremos que dos familias del pueblo son vecinas cuando vivan en la misma parcela (como ocurre con E y G) o cuando vivan en parcelas adyacentes, (como ocurre con D y G).

Debido al estado de deterioro de las casas, los habitantes de Bolci han decidido derribar sus viviendas actuales y construir una manzana de pisos que ocupará unas pocas parcelas. El resto del terreno lo habilitarán para zonas verdes, comercios y otros servicios para lograr un pueblo más moderno, habitable y ecológico. No se conoce aún donde estarán los pisos, ni cuantas viviendas habrá en cada edificio. Tampoco se sabe cómo los ocuparán las familias. pero los habitantes del pueblo han acordado que en el nuevo proyecto se deben respetar las tres condiciones siguientes:

1.- Respetar las divisiones parcelarias: Cada vivienda nueva debe estar completamente ubicada dentro de alguna de las primitivas parcelas.

2.- Mantener la vecindad: Las familias que ahora son vecinas deben seguir siéndolo cuando se trasladen a su nueva vivienda. Se puede tener también nuevos vecinos, pero los viejos hay que mantenerlos.

3.- Cambiar obligatoriamente de parcela: Ninguna familia puede mantenerse en su parcela inicial, todas deben cambiar de número de parcela.

Solo si se cumplen esas tres condiciones podremos decir que un proyecto es válido como, por ejemplo, el que muestra la figura 2. Fijémonos que en el ejemplo que damos se da una circunstancia curiosa: Las familias vecinas L y M siguen estando en las parcelas 9 y 10. Tan solo han intercambiado entre sí el número de parcela. Decimos entonces que en las parcelas 9 y 10 hay un sitio de cruce. En cada proyecto, llamaremos sitio de cruce a dos parcelas que tienen al menos dos familias vecinas que intercambian entre sí el número de parcela que tenían en la distribución original.

Y el desafío de la semana consiste en determinar la cantidad mínima y máxima de sitios de cruce que puede llegar a tener un proyecto válido. En la respuesta, debéis indicar el valor mínimo y el valor máximo, aportar al menos un proyecto de ejemplo de cada caso, y señalar las razones que garantizan que no hay posibilidad de construir proyectos válidos con una cantidad de sitios de cruce fuera de ese rango.