Se han corregido los apuntes del tema 2. Concretamente se ha eliminado el siguiente ejercicio que se había propuesto con cierta ligereza:
Este resultado se puede extender a grupos finitos en general. Si \((G,\star )\) es un grupo finito que tiene algún elemento de orden impar, entonces tiene tantos elementos de orden par como impar.
Lo que propone el ejercicio es falso. Invitamos al lector a buscar un ejemplo de grupo que tenga todos sus elementos de orden impar.
El ejercicio eliminado estaba en la página 67 de los apuntes y aparecía etiquetado como “Ejercicio 2.4.6”.
Lo que sí es cierto, tras demostrar el Teorema de Cayley, es que en cada grupo finito, al ser isomorfo a un subgrupo de \(S_n\), debe existir una clasificación análoga a la del signo en las permutaciones. Pero esta clasificación no es la paridad del orden de los elementos.
Además se han modificado las notas de teoría del tema 2. Concretamente se han corregido las permutaciones que intervienen en la explicación del juego inicial (página 58 y siguientes), que estaban mal, y la del ejemplo 2.3.15. Además se ha añadido una observación tras la fórmula de Cauchy en la página 63, la nota 2.3.19.
Se han modificado algo las notas del Tema 1: Conjuntos. Además de corregir algunas erratas, se ha modificado (para mejor) el enunciado de la proposición 1.1.8 y se ha añadido un nuevo apartado al final: Factorización canónica de una aplicación.
Bienvenidos al blog de la asignatura Álgebra Básica. Aquí iremos poniendo todo el material necesario para seguir la asignatura. Por lo pronto en la página “Material de la Asignatura. Curso 15/16” pueden encontrar un resumen del Proyecto Docente, además de las notas de teoría y la relación de problemas del tema 1.
Acabamos de poner en la plataforma de enseñanza virtual (aunque parece que ahora mismo no es posible acceder a la plataforma) las calificaciones finales de la convocatoria de febrero. Mañana las pondremos en el tablón.
La revisión será la semana que viene: lunes 9 y martes 10 de febrero de 12:00 a 13:00, y el miércoles 11 de febrero de 10:30 a 11:30.
Blog de la asignatura Álgebra Básica de la Universidad de Sevilla