Décimo desafío: cómo rellenar con piezas un tablero

embedded by Embedded Video

María López Valdés, licenciada en Matemáticas y promotora de la empresa Bit&Brain Technologies, presenta el décimo desafío de EL PAÍS con el que se celebra el centenario de la Real Sociedad Matemática Española. Las respuestas pueden enviarse a problemamatematicas@gmail.com antes de la medianoche del martes 24 de mayo (00.00 horas del miércoles).

Enunciado del problema: Tenemos un tablero cuadrado de 9×9=81 casillas iguales y 20 piezas idénticas de la forma que se muestra en el vídeo.

Se trata de ir poniendo piezas en el tablero en cualquier posición, como en un puzzle, con el objetivo final de cubrir el MAYOR número de cuadrados posible, o lo que es lo mismo, dejando vacíos el MENOR número de cuadrados posible. Cada cuadrado de la pieza ocupa exactamente un cuadrado del tablero y las piezas no se pueden solapar.

Dividimos el problema en dos cuestiones:

1. Demostrar que NO ES POSIBLE cubrirlo dejando solo un cuadrado libre.

2. ¿Cuál es el MENOR número de cuadrados que pueden dejarse VACÍOS en el tablero al recubrirlo con este tipo de piezas?

Nota: Las piezas son reversibles

Solución al noveno desafío… acaba en 52

Recordemos el problema: Hemos copiado mal una potencia de 2. Sólo sabemos que el exponente empieza por 528, luego hay varias cifras, y termina en 7301. Hay que calcular cuáles serían las dos últimas cifras de tan enorme número.

Los argumentos aceptados van desde simplemente observar la aparición cíclica de las dos últimas cifras, a darse cuenta de que 76×76=**76, hasta argumentos muy limpios, pero que necesitan más lenguaje, usando congruencias.

La solución propuesta por el profesor Elduque es la siguiente:

Buscamos posibles regularidades en las dos últimas cifras de las potencias de 2. Exceptuando la primera: 2^1 = 2, el resto de potencias es un múltiplode 4, luego sus dos últimas cifras forman un múltiplo de 4 entre 0 y 99, que no puede acabar en 0, pues el número no es múltiplo de 5. Nos quedan 20 posibles terminaciones para las potencias de 2^a a con a igual o mayor que 2. En consecuencia, partiendo de 2^2, habría alguna repeticiónde las dos últimas cifras en las veinte potencias siguientes: Continuar leyendo “Solución al noveno desafío… acaba en 52”

Noveno desafío: una enorme potencia de 2

Alberto Elduque, catedrático de Álgebra de la Universidad Zaragoza, presenta el noveno desafío de EL PAÍS con el que se celebra el centenario de la Real Sociedad Matemática Española. Las respuestas pueden enviarse a problemamatematicas@gmail.com antes de la medianoche del lunes 16 de mayo (00.00 horas del martes).

Enunciado: Hemos copiado mal una potencia de 2. Sólo sabemos que el exponente empieza por 528, luego hay varias cifras, y termina en 7301. Hay que calcular cuáles serían las dos últimas cifras de tan enorme número.

Pueden ver el vídeo con la exposición del problema en El País.

El cubo de suma cero… no existe

Recordemos el problema: asignamos un número (1 o -1) a cada uno de los vértices de un cubo. Tendremos entonces ocho números. A continuación multiplicamos los cuatro vértices de cada cara para obtener otros seis números, que también tendrán que ser 1 o -1. Pues bien, se trataba de conseguir un cubo en que la suma de esos 14 números dé cero. O demostrar en su caso por qué dicho cubo no puede existir.

Y, efectivamente, ese cubo no puede exisitir… pero hay que demostrarlo. Para este desafío se recibieron 980 respuestas dentro del plazo previsto, de las que el 85% eran correctas. La mayoría daban soluciones similares a la de Izar y Paula (ver vídeo en El País), alumnas de 4º de la ESO e integrantes del proyecto ESTALMAT pero un cierto número razonaban correcta y elegantemente de esta manera: Para que la suma de los 14 valores dé 0, debe haber siete +1 y siete -1, de manera que el producto de los 14 números debe ser -1. Pero si llamamos A, B, C, D, E, F, G, H a los valores de los vértices, como cada vértice multiplica a 3 caras distintas, resulta que si multiplicamos los 14 valores obtenemos (ABCDEFGH)^4, una potencia cuarta y por tanto necesariamente un número positivo, lo que es contradictorio con este producto debiese ser -1. Por tanto el cubo de suma cero no puede existir.

Un cubo de suma cero

Izar Alonso (IES Diego Velázquez de Torrelodones) y Paula Sardinero (Colegio Virgen de Europa de Boadilla del Monte), estudiantes de 4º de ESO que participan en el Proyecto ESTALMAT, presentan el octavo desafío de EL PAÍS con el que se celebra el centenario de la Real Sociedad Matemática Española. Las respuestas pueden enviarse a problemamatematicas@gmail.com antes de la medianoche del martes 10 de mayo (00.00 horas del miércoles).

Enunciado del problema: A cada uno de los vértices de un cubo le asignamos un 1, o un -1. Después asignamos a cada una de las caras el producto de los números de sus vértices.

¿Puede hacerse la asignación inicial de manera que la suma de los 14 números (8 de los vértices y 6 de las caras) sea 0? Encontrar tal asignación o demostrar que no existe. Como en el problema del reloj, se recomienda no probar con todos los casos posibles.